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Abstract

The deprivation of zinc, caused by malnutrition or as a consequence of aging or disease, strongly affects immune cell functions, causing higher frequency of
infections. Among other effects, an increased production of reactive oxygen species (ROS) and proinflammatory cytokines has been observed in zinc-deficient
patients, but the underlying mechanisms were unknown. The aim of the current study was to define mechanisms explaining the increase in proinflammatory
cytokine production during zinc deficiency, focusing on the role of epigenetic and redox-mediated mechanisms.

Interleukin (IL)-1B and tumor necrosis factor (TNF)a production was increased in HL-60 cells under zinc deficiency. Analyses of the chromatin structure
demonstrated that the elevated cytokine production was due to increased accessibilities of IL-13 and TNFa promoters in zinc-deficient cells. Moreover, the level
of nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase-produced ROS was elevated under zinc deficiency, subsequently leading to p38
mitogen-activated protein kinase (MAPK) phosphorylation. The increased activation of p38 MAPK appeared to be necessary for posttranscriptional processes in
IL-1P and TNFa synthesis.

These data demonstrate that IL-13 and TNFo expression under zinc deficiency is regulated via epigenetic and redox-mediated mechanisms. Assuming an
important role of zinc in proinflammatory cytokine regulation, this should encourage research in the use of zinc supplementation for treatment of

inflammatory diseases.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Zinc is an essential trace element important for a variety of cellular
functions such as apoptosis, signal transduction, transcription, differ-
entiation and replication in all organ systems and during embryonic
development [1-5]. Therefore, zinc deficiency caused by malnutrition
or as a consequence of aging, pregnancy or disease is detrimental for
human health [3,5,6] and is currently one of the leading causes of
morbidity and mortality in developing countries [7,8].

It has been demonstrated that zinc is necessary for the structure
and function of over 300 enzymes [9], including a number of DNA
methyltransferases, methyl-binding proteins and histone-modifying
enzymes such as acetylases, deacetylases or methylases [10-13]. This
along with the observation that zinc deficiency induces global DNA
hypermethylation [11,13] points to a role of zinc in epigenetic
processes such as chromatin remodeling, DNA methylation, histone
modification and noncoding RNA synthesis [10-13].

In addition to its influence on epigenetic processes, zinc also
regulates gene expression via its involvement in intracellular signaling
[2,14-17]. Zinc is reported to stabilize but also inhibit transcription
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factors, kinases and phosphatases or the assembly of multiprotein
complexes [2,15]. Moreover, the direct regulatory role of zinc in gene
expression as a second messenger and its indirect role via modifying
calcium flux in cells have been reported [2]. Finally, there are a number
of studies describing the role of zinc as an antioxidant as well as the
increase of oxidative stress during zinc deficiency [16-19], providing
alternative mechanisms for the regulation of gene expression by zinc.

The majority of zinc-regulated genes are involved in signal
transduction, in responses to oxidative stress or in growth and
energy utilization [3], all known to be particularly important during
regulation of the immune response [15]. A variety of studies have
already shown a strong impact of zinc deficiency on cell-mediated
immunity, including various T-cell defects [1,4,15,20,21]. In contrast,
the number and reactivity of myeloid cells increase during zinc
deficiency [20]. It has been shown that zinc deficiency induces
proinflammatory cytokine synthesis and reactive oxygen production
in myeloid cells, but the number of studies is limited and the
underlying mechanisms are not completely understood [3,17,22-25].

Therefore, we investigated the influence of zinc deficiency on the
production of the proinflammatory cytokines tumor necrosis factor
(TNF)a and interleukin (IL)-1p in promyeloid cells, focusing on the
role of epigenetic and redox-mediated mechanisms as possible
explanations for zinc-deficiency-induced changes.
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2. Methods and materials
2.1. Cell culture

Zinc-sufficient HL-60 cells (HL-60°') were grown in RPMI 1640 medium (Lonza,
Verviers, Belgium) supplemented with 10% low-endotoxin fetal calf serum (PAA,
Coelbe, Germany), 2 mM L-glutamine, 100 U/ml penicillin and 100 pg/ml streptomycin
(all Lonza) in a 5% CO, humidified atmosphere at 37°C. For zinc-sufficient THP-1 cells,
0.5% p-mercaptoethanol (Merck, Darmstadt, Germany) was added to the medium. To
induce zinc deficiency, cells were cultured with the membrane permeable zinc chelator
N,N",N"-tetrakis-(2-pyridyl-methyl)ethylenediamine (TPEN, 1 pM, Sigma-Aldrich,
Taufkirchen, Germany) for 7 days and are denoted as HL-60%" and THP-19. To
measure cellular viability, cells were treated as indicated in each experiment and
subsequently incubated with propidium iodide (10 pg/ml in phosphate-buffered
saline) for 10 min at 4°C in the dark. The dye is membrane impermeable in intact cells
and stains dead cells as a result of the loss of plasma membrane integrity. Staining was
detected by flow cytometry using a FACSCalibur flow cytometer. For zinc reconstitution
(HL-60"¢¢), HL-60" cells were washed and incubated in control medium for another 7
days. Zinc-deficient medium was obtained by treatment with CHELEX 100 ion
exchange resin (Sigma-Aldrich), known to bind divalent cations, for 1 h at room
temperature, followed by reconstitution of 500 uM CaCl, and 400 uM MgCl, [25], being
essential for cell proliferation. Other cations need not be reconstituted as shown by Yui
et al. [26]. HL-60 cells cultured in chelexed medium are denoted HL-60°"E, As a zinc-
sufficient control, chelexed medium was supplemented with 8 uM ZnSO,4 (HL-60<E ).
The differentiation of HL-60 cells into monocytic cells using 1c,25-dihydroxyvitamin
D5 (VD3; 100 nM) for 72 h was performed and monitored as described [25,27].

2.2. Enzyme-linked immunosorbent assay (ELISA)

Supernatants were harvested and stored at —20°C, and IL-13 and TNFo were
quantified by ELISA (BD Pharmingen).

2.3. Reverse transcription and real-time polymerase chain reaction (PCR)

RNA was isolated using RNA II-Kit (Macherey-Nagel, Diiren, Germany) and
reverse-transcribed using qScript cDNA Synthesis Kit in reactions containing 50 ng/ul
RNA (Quanta Bioscience, Gaithersburg, MD, USA). Primers for IL-1B [28], TNFa
(forward primer: 5-ATGAGCACTGAAAGCATGATCC-3"; reverse primer: 5-GAGGGCT-
GATTAGAGAGAGGTC-3") and the housekeeping gene Porphobilinogen-deaminase
(PBGD) [29] were added at final concentrations of 0.1 uM. To exclude amplification
of genomic DNA or hnRNA, primer pairs which exclusively bind to exon-exon borders
or within different exons were chosen. IL-1(> and TNFa real-time PCRs were performed
with 2 pl ¢cDNA in 25-l reaction volumes in duplicates using Brilliant Sybr Green qPCR
Master Mix (Applied Biosystems, Darmstadt, Germany) with the following parameters:
95°C for 15 min followed by 40 cycles of 95°C for 30 s and 56°C for 30 s. Standard curves
were generated using 10-fold serial dilutions of cDNA from peripheral blood
mononuclear cells. The mRNA levels of the cytokines were normalized to PBGD levels.

2.4. Chromatin accessibility by real-time (CHART)-PCR assay

MNase accessibility assays were performed, and results were plotted as described
previously [27]. Real-time PCR was performed in 25-pl reaction volumes in duplicates
using Brilliant Sybr Green qPCR Master Mix (Applied Biosystems) containing 100 ng of
DNA. Primers for IL-1B promoter regions IL-1B [, II, IV and VIII [30]; TNFo promoter
regions TNF I-1V [31]; or the GAPDH promoter [32] were added at a final concentration
of 0.1 uM. For quantification, a standard curve was generated using serial dilutions of
genomic DNA. MNase accessibility was calculated by the following formula:
a= \100—(%”’“”*;100)\%

quantity(MNase —

2.5. Measurement of free intracellular zinc with FluoZin-3AM

Free zinc was measured as described previously [33] using FluoZin-3 AM ester (1
MM, Invitrogen, Karlsruhe, Germany). The zinc-dependent fluorescence was analyzed
with FACScan (BD Bioscience) using Cellquest software 3.0. The concentration of
intracellular labile zinc was calculated from the mean fluorescence with the formula
[Zn]=KpX[(F— Fmin)/(Fmax— F)] using a dissociation constant for the Zn/FluoZin-3AM
complex of 8.9 nM [34] and determining the maximal and minimal fluorescence by
addition of zinc (100 uM) and pyrithione (50 uM) or TPEN (50 puM), respectively.

2.6. Measurement of reactive oxygen species (ROS) production using dihydrorhodamine
123 (DHR)

A total of 1x10° cells/ml were loaded with DHR (1 pug/ml, Invitrogen) in incubation
buffer (5 mM glucose, 1 mM MgCl,, 1 mM NaH,PO,, 1.3 mM CaCl,, 120 mM NaCl, 25
mM Hepes, 5.4 mM KCl, 0.3% bovine serum albumin; pH 7.35) for 30 min at 37°C.
Subsequently, cells were washed with measurement buffer (incubation buffer without
albumin) and transferred into a 96-well plate at a density of 1x10° cells/ml. The
resulting fluorescence was recorded on a fluorescence well plate reader (excitation
wavelength: 485 nm, emission: 535 nm, Ultra 384, Tecan, Crailsheim, Germany).

2.7. Cell extracts and Western blotting

A total of 2x10° cells were lysed and sonicated in 100 pl lysis buffer [0.5 M Tris-HCl
(pH 6.8), 26.6% glycerin, 10% sodium dodecyl sulfate (SDS), 1 mM NasVO,4 and 1% -
mercaptoethanol] [27]. SDS-polyacrylamide gel electrophoresis using an equivalent of
4x10° cells and Western Blot analysis were performed as described previously [27].
Membranes were incubated with horseradish-peroxidase (HRP)-linked anti-rabbit IgG
secondary antibody and HRP-coupled anti-biotin antibody for detection of biotin-
labeled molecular weight standard for 1 h, followed by detection with LumiGlo reagent
(Cell Signaling Technology) on a LAS-3000 (Fujifilm Lifescience, Diisseldorf, Germany).
The membrane was stripped, blocked and then reprobed for 3-actin as described [27].

2.8. Statistical analysis

Statistical significance of experimental results was analyzed by Student's t test or,
in case of multiple comparisons, by one-way analysis of variance (ANOVA) followed by
Tukey's or Dunnett’s honestly significant difference post hoc test using GraphPad
Prism software version 5 (GraphPad software, La Jolla, CA, USA). For single
comparisons, *P<.05 and *P<.01 are used for data significantly different from the respective
HL-60" as determined by ANOVA/Dunnett's honestly significant difference test or
Student's t test. For multiple comparisons, significant differences at P<.05, determined by
ANOVA/Tukey's honestly significant difference test, are indicated by different letters.

3. Results

3.1. Impact of zinc deficiency on intracellular free zinc as well as IL-1(3
and TNFo expression

Zinc deficiency induces proinflammatory cytokine expression in
myeloid cells [22,27], but the underlying mechanisms are unknown.
To examine the effect of zinc deficiency on IL-13 and TNFa
expression, HL-60 cells, producing negligible proinflammatory IL-13
and TNFa amounts [27], were incubated with TPEN.

First, we verified that long-term depletion of zinc by TPEN
significantly decreased free intracellular zinc levels in HL-60 cells
compared to HL-60°"' (Fig. 1A), while not affecting viability of the
cells (Supplemental figure 1). Moreover, unstimulated HL-609¢f
produced small amounts of IL-13 and TNFox mRNA which were
significantly increased after stimulation with phorbol-12-myristate-
13-acetate (PMA) only (Fig. 1B, C). Low expression of IL-1(> and TNFa
mRNA was also detected in unstimulated HL-60°*, but no significant
increase was observed after stimulation with PMA (Fig. 1B, C).
Lipopolysaccharide (LPS) generally had no effect, indicating that HL-
609" cells were not differentiated and CD14 negative [25]. This
suggests a positive regulatory role of long-term zinc deficiency in
PMA-induced IL-13 and TNF« transcription.

To check whether zinc deficiency also induced the secretion of IL-1p3
and TNFoa by HL-60 cells, we analyzed their quantities in the
supernatants of the cells by ELISA. The basal amount of IL-1p released
by HL-609¢ was higher than by HL-60°“f (Fig. 2A), but did not reach
significance. IL-1p protein levels further increased after PMA stimula-
tionin HL-609* only (Fig. 2A). PMA treatment increased TNFa secretion
by HL-60% and HL-60°“" (Fig. 2B). However, the amounts of TNFo
detected in the supernatants of HL-609¢" were significantly higher than
those of PMA-stimulated HL-60°"", reflecting the mRNA data. Reconsti-
tution of HL-60%¢" cells with control medium for another 7 days (Fig. 2A,
B) showed the reversibility of the changes induced by zinc deficiency.
The low levels of IL-13 and TNFa protein in the supernatants after zinc
reconstitution were comparable to those detected for HL-60°",

3.2. Chromatin remodeling within IL-13 and TNF« promoters

Recent results showed that chromatin remodeling within IL-13
and TNFa promoters into an open structure is important for the
activation of IL-13 and TNFo expression [27,31]. Because zinc is
involved in epigenetic processes such as chromatin remodeling [11-
13,35], we compared the chromatin structures of IL-13 and TNFa
promoters in HL-60" and HL-60°“". Accessibilities of promoter
regions IL-13 [ (—107 to —17), IL-1p I (—199 to —109) (Fig. 3A),
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Fig. 1. Impact of intracellular free zinc levels on IL-1(3 and TNFoe mRNA expression. (A)
HL-60°" (black) and HL-60"" (light grey) cells were loaded with the zinc-specific
fluorescent probe FluoZin-3, and zinc-dependent fluorescence was recorded by flow
cytometry. Results represent means+S.E. (S.E.M.) of n=7 independent experiments.
Significant differences at **P<.01 were determined by Student's t test. (B-C) HL-60°“f
(black) and HL-60% (light grey) cells were stimulated with LPS (250 ng/ml) or PMA (10
ng/ml) for 3 h. IL-13 (B) and TNFa (C) mRNA was analyzed by quantitative real-time
PCR. Values were normalized to housekeeping gene PBGD and are presented as means+
S.E. of n=38 independent experiments. Significant differences at P<.001, determined by
ANOVA/Tukey's honestly significant difference test, do not share the same letters.

TNFa 1 (4+99/-42) and TNFo 11 (+32/-119) (Fig. 3B) were
significantly increased under zinc deficiency, demonstrating that IL-
13 and TNFa promoters become highly accessible under zinc
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Fig. 2. Zinc deficiency and proinflammatory IL-1(3 and TNFa release. HL-60°f (black),
HL-60%" (light grey) and HL-60"¢ (dark grey) cells were cultured as described in
Materials and methods. After stimulation with PMA (10 ng/ml) for 3 h, the amounts of
(A) IL-1P and (B) TNFa in the culture supernatants were measured by ELISA. Results
shown are means+S.E.M. of n=6 independent experiments. 0 indicates that no
cytokine secretion could be detected. Significant differences at P<.05, determined by
ANOVA/Tukey's honestly significant difference test, do not share the same letters.

deficiency near the transcriptional start sites. Zinc reconstitution
decreased the accessibilities of promoter regions IL-1p I, IL-13 II,
TNFa I and TNFo Il compared to the structures observed in HL-609¢",
resembling the inaccessible structure detected in HL-60°",

The accessibility of promoter region TNFa Il (—100/—250) rose
from 43% to 59% under zinc deficiency (Fig. 3B), without reaching
significance. Analyses of regions IL-1 IV (—347 to —257), IL-1p VIII
(—673 to —583) and TNF IV (—195/-345), which are located further
upstream, revealed their complete inaccessibility under all conditions
(datanot shown). Additionally, zinc deficiency had no effect on human
GAPDH promoter accessibility (data not shown), demonstrating the
specific influence of zinc on these proinflammatory gene promoters.

3.3. Specificity of the zinc-deficiency-induced changes

To exclude TPEN specific side effects other than intracellular zinc
chelation, we analyzed HL-60 cells cultured in zinc-deficient,
chelexed medium (HL-60“"E) in comparison to HL-60"E* supple-
mented with 8 uM ZnSO, (Supplemental Figure 2). Moreover, to rule
out a cell-specific phenomenon, the monocytic cell line THP-1 was
used. Significantly decreased intracellular zinc content in TPEN-
cultured THP-19¢" (Supplemental Figure 3A) and in HL-60°HE
(Supplemental Figure 2A) as well as an increase in IL-13 and TNFa
secretion (Supplemental Figures 2B-C and 3B-C) in these cells could be
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Fig. 3. Impact of zinc deficiency on IL-1{3 and TNFa promoter conformation. CHART-PCR
analyses of IL-1p and TNFa promoters in HL-60 cells are shown. HL-60°f (black), HL-
60" (light grey) and HL-60"¢ (dark grey bars) cells were cultured as described in
Materials and methods. Real-time PCR was performed using primer sets for (A) IL-13
promoter regions | and II and for (B) TNFa promoter regions I, II and IIl. Mean
calculated accessibilities and S.E.M. for n=4 independent experiments are presented.
*P<.05 for data significantly different from respective HL-60°" were determined by
ANOVA/Dunnett's honestly significant difference test.

demonstrated. Additionally, promoter accessibilities of IL-13 I, IL-1R 11,
TNFo I and TNFo [T were higher in THP-19¢f and HL-60"F than in THP-
134for HL-60°ME + respectively (Supplemental Figures 2D-E and 3D-E).

3.4. Role of zinc deficiency in HL-60 differentiation into monocytic cells

Since VD3-induced differentiation of HL-60 cells leads to IL-13
promoter remodeling and IL-1f3 and TNFo production, and combined
zinc deficiency enhances CD11b/CD14 surface expression [27,38],
CD14 expression was investigated under zinc-deficient conditions. No
expression of the monocyte marker CD14 on stimulated and
unstimulated HL-609¢ or HL-60“"E (Supplemental Figure 4A-D) or
after TPEN incubation of HL-60 cells for 14 days could be detected. In
contrast, VD3 incubated cells showed 58% CD14™* cells (Supplemental
Figure 4E-F). This suggests that the remodeling of IL-13 and TNFa

promoters induced by zinc deficiency was a separate effect indepen-
dent from complete differentiation.

3.5. ROS production of zinc-deficient HL-60 cells

Zinc deficiency is described to elevate oxidative stress in different
cell types [18,19]. We observed that the basal level of ROS was
significantly higher in HL-60¢" than in HL-60°% (Fig. 4A), indicating a
shift to a more intracellular oxidative milieu under zinc deficiency.

Whereas no changes in DHR oxidation after LPS or PMA stimulation
of HL-60°" (Fig. 4B) could be detected, ROS concentrations in HL-60%¢f
steadily increased only after PMA stimulation until the end of the
experiment (Fig. 4C). In HL-60"¢, only a small increase of DHR
oxidation could be detected shortly after PMA stimulation (Fig. 4D),
indicating the reversibility of the changes in PMA-induced ROS
synthesis that we observed in HL-609", LPS had no influence on ROS
production in HL-60"°¢ as observed in HL-60°*' and HL-609¢ (Fig. 4D).

In myeloid cells, ROS are primarily produced by nicotinamide
adenine dinucleotide phosphate-oxidase (NADPH) oxidase (NOX)
during oxidative burst [36]. Preincubation of HL-60°“f, HL-609¢f and
HL-60"¢ with the NOX inhibitor diphenyleneiodonium (DPI) before
PMA stimulation did not alter the basal levels of ROS production in
these cells (Fig. 4E-G). In contrast, DPI preincubation almost
completely abrogated the PMA-induced increase in DHR oxidation
in HL-609¢f (Fig. 4F). This indicates that ROS are produced by NOX
in HL-60%,

3.6. Connection between zinc, ROS and cytokine expression

To elucidate whether changes in the ROS production are related to
cytokine expression under zinc deficiency, cells were again preincu-
bated with DPI before stimulation, and IL-13 and TNFa release was
measured by ELISA. DPI abrogated the PMA-induced increase of IL-13
secretion in HL-609f (Fig. 5A), whereas the basal IL-13 expression
remained unchanged. In addition, we found a significant decrease in
PMA-induced TNFa synthesis in HL-60°“f and HL-60%¢" preincubated
with DPI (Fig. 5B), suggesting that ROS-dependent and ROS-
independent pathways are involved in PMA-induced TNFa synthesis.

To more precisely define how ROS influence IL-13 and TNFa
expression under zinc deficiency, we assessed IL-13 and TNFa
promoter accessibilities after treatment with N-acetylcysteine
(NAC) for 7 days. The strong antioxidant NAC was able to abrogate
PMA-induced DHR 123 oxidation in HL-60 (Supplemental Figure
5). As depicted in Fig. 6A-B, coincubation of HL-60¢" with NAC did
not inhibit the remodeling of promoter regions IL-13 [, IL-1( II, TNFoe [
and TNFa Il observed in HL-609¢, but further increased the promoter
accessibilities of these regions. Control regions IL-13 IV, IL-1@3 VIII and
TNFa IV remained inaccessible (data not shown). Hence, these results
excluded that ROS are involved in chromatin remodeling of IL-1(3 and
TNFo promoters.

Next, we investigated whether ROS induced transcription of IL-13
and TNFa. Fig. 7 shows that NAC had no influence on IL-13 and TNFa
mRNA levels in HL-609°", Additionally, preincubation of HL-604¢ with
DPI had also no significant effect on PMA-induced IL-1(3 or TNFoe mRNA
expression (Supplemental Figure 6). Hence, it was excluded that the
ROS-dependent increase of IL-13 and TNFa secretion was regulated via
chromatin remodeling (Fig. 6) or changes in transcription (Fig. 7).

Fig. 4. Changes in the redox status during zinc deficiency. HL-60°f, HL-609¢" and HL-60"° cells were cultured as described in Materials and methods and loaded with DHR123 for 30 min.
The fluorescence resulting from DHR123 oxidation was measured in a well plate reader. (A) Basal levels of oxidated DHR123 fluorescence are shown as mean =+ S.E.M. of n=7
independent experiments. Significant differences from HL-60°"f at **P<.01 were determined by Student's t test. (B-D) After 10 min of recording of the baseline fluorescence for HL-60°*
(B), HL-60% (C) and HL-60"¢ (D), the cells were stimulated with buffer (circles), LPS (250 ng/ml, triangles) or PMA (10 ng/ml, squares) for another 45 min, and fluorescence was
monitored and normalized to untreated controls. One representative example of n=3 for each approach is shown. (E-G) DHR123 loaded HL-60°"" (E), HL-60% (F) and HL-60"¢ (G)
cells were preincubated with buffer (circles) or the NOX inhibitor DPI (10 pM, triangles) for 30 min. After 10 min of recording of the baseline, buffer (filled symbols) or PMA (10 ng/ml,
open symbols) was added, and fluorescence was monitored for another 45 min and normalized to buffer-treated controls. Shown are mean 4 S.E.M. of at least n=3 independent

experiments for each type of cell culture.
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Fig. 5. Role of ROS in IL-1p and TNFa synthesis. After preincubation with the NOX
inhibitor DPI (10 uM) for 30 min, HL-60°“f (black) and HL-60% (light grey) cells were
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was measured by ELISA. Data are presented as mean = S.E.M. for n=13 independent
experiments. 0 indicates that no cytokine could be detected. Significant differences at
P<.05, determined by ANOVA/Tukey's honestly significant difference test, do not share
the same letters.

3.7. Influence of zinc and ROS on p38 MAPK signaling

Since p38 mitogen-activated protein kinase (MAPK) is involved in
IL-13 and TNFa production in monocytes [24,30] and in gene
expression linked to ROS [37], the role of p38 and ROS in the
posttranscriptional processing of IL-1 and TNFa was analyzed. PMA
stimulation led to a fast increase in p38 MAPK activation within 15
min only in HL-609¢" but not in HL-60°"! (Fig. 8). The detection of p38
phosphorylation in both HL-609¢" and HL-60°"' after H,0, treatment
verified a ROS-mediated activation of p38 MAPK (Supplemental
Figure 7A). Moreover, DPI preincubation blocked PMA-induced
phosphorylation of p38, underlining the role of NOX-produced ROS
in p38 MAPK activation (Supplemental Figure 7B).

Finally, we investigated whether p38 MAPK activation by ROS was
essential for posttranscriptional processing of IL-13 and TNFa.
Preincubation with the p38 inhibitor SB202190 had no effect on IL-
1R or TNFa secretion in HL-60°%" (Fig. 9) but significantly inhibited
PMA-induced IL-1p (Fig. 9A) and TNF« secretion (Fig. 9B) in HL-609",
These data demonstrate the important role of ROS-activated p38 in
the posttranscriptional processing of IL-13 and TNFo.
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Fig. 6. Role of antioxidants in chromatin remodeling. HL-60 cells were incubated with
(light grey bars) or without (black bars) TPEN or TPEN in the presence of the
antioxidant NAC (1 mM, white bars) for 7 days followed by CHART-PCR analysis.
CHART assay was performed using primer sets for IL-1(3 promoter regions [ and Il (A) as
well as for TNFa promoter regions I, Il and III (B). Mean calculated accessibilities
+S.EM. for n=4 independent experiments are shown. *P<.05 for data significantly
different from the respective HL-60°*f was determined by ANOVA/Dunnett's honestly
significant difference test.

4. Discussion

Recent studies suggest a strong influence of zinc in the regulation
of proinflammatory cytokine expression in mononuclear cells
[15,22,24]. Furthermore, increased IL-1p and TNFa cytokine synthesis
during zinc deficiency induced by dietary means, as a consequence of
leishmaniasis or cancer, or due to aging or pregnancy was reported
[5,22,38]. TPEN-mediated decrease of intracellular zinc levels in
promyeloid HL-60 cells (Fig. 1A) is linked to increased IL-1(3 and TNFo
mRNA and protein levels (Figs. 1B-C and 2), supporting the
hypothesis that zinc deficiency generates a proinflammatory envi-
ronment in the human body [5,20,21,39].

During VD3-induced differentiation of promyeloid HL-60 cells,
intracellular free zinc levels decrease, whereas IL-13 and TNFa
expression increases and the IL-13 promoter is remodeled into an
open conformation [25,27]. Interestingly, TPEN treatment can also
support 72-h VD3-induced differentiation. Our experiments indicate
that the decrease of intracellular zinc due to long-term zinc
deprivation promotes changes of the chromatin structures of IL-1p
and TNFa promoters enabling the expression of both genes (Figs. 1-
3). These observations could be confirmed using zinc-deficient
medium, generated using CHELEX 100 (Supplemental Figure 2). To
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Fig. 7. Effect of ROS on cytokine transcription. To measure the effect of zinc-deficiency-
induced ROS on IL-13 and TNFao mRNA expression, cells were incubated with normal
medium (black bars), TPEN (1 pM, light grey bars) or a combination of TPEN (1 uM) and
NAC (2 mM) (white bars) for 7 days. Cells were stimulated with PMA (10 ng/ml) for 3 h
as indicated, and IL-13 and TNFa mRNA expression was measured by real-time PCR.
Data are presented as mean +S.E.M. of n=28 independent experiments. Significant
differences at P<.05, determined by ANOVA/Tukey's honestly significant difference
test, are indicated by different letters.

exclude a single cell-specific phenomenon, THP-1 could also confirm
the data generated with HL-60 cells (Supplemental Figure 3). Since
CD14 is not induced on HL-609¢ cell surface (Supplemental Figure 4),
zinc deficiency alone does not initiate complete monocytic differen-
tiation, but might be able to support VD3-induced differentiation by
the activation of some monocytic genes.
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Fig. 8. Influence of PMA on p38 MAPK activity. The effect of zinc chelation by TPEN on
p38 MAPK phosphorylation was investigated in HL-60°'f (C) and HL-60% (T)
stimulated with PMA (10 ng/ml) for 0, 15 and 30 min. p38 phosphorylation was
analyzed by Western blotting with antibodies against phosphorylated p38 MAPK
(Thr'8/Tyr'82), p38 MAPK and P-actin. The blot shown is representative of n=6
independent experiments.
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Fig. 9. Role of p38 MAPK in posttranscriptional processing of IL-1(3 and TNFa. HL-60°"
(black bars) and zinc-deficient (grey bars) HL-60 cells were stimulated with PMA
(10 ng/ml) for 3 h after preincubation with the p38 MAPK inhibitor SB202190 (SB,
2 pM, 30 min), as indicated. The concentration of IL-1(> and TNFa in the supernatants of
the cells was determined by ELISA. Data are presented as mean +S.E.M. of n=13
independent experiments. 0 indicates that no cytokine could be detected. Significant
differences at P<.05, determined by ANOVA/Tukey's honestly significant difference
test, do not share the same letters.

The mechanism of how zinc deficiency is involved in chromatin
remodeling is currently unclear. DNA demethylation and histone
methylation, both known to be affected by zinc [11,13], as
mechanisms for chromatin remodeling in the IL-1p promoter could
be excluded because inhibition of DNA methyltransferases via 5-aza-
2-deoxy-3-cytidine did not result in an increased IL-13 promoter
accessibility (data not shown). However, there is a complex network
of zinc-regulated molecules and signaling pathways [5,21,39] that
may be involved in zinc-deficiency-induced chromatin remodeling.

Since free radicals formation depends on the cellular zinc
concentrations [16-19], the alteration of the redox state of the cells
could be another important mechanism in the regulation and
expression of IL-13 and TNFa. Long-term zinc deprivation of HL-60
cells led to a rise in basal ROS levels compared to HL-60°*" (Fig. 4A).
We could not detect an LPS-induced increase in ROS production in HL-
609 but observed a strong elevation of ROS after PMA stimulation
(Fig. 4B) since HL-60 cells lack CD14 expression.

In primary monocytes, PMA stimulation activates NOX-mediated
ROS production [35,40]. NOX is also involved in the PMA-induced
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production of ROS by HL-609¢f, and NOX-produced ROS are important
for IL-1 and TNFa production (Fig. 4C). Interestingly, the amount of
TNFa in the supernatants of DPI-preincubated, PMA-stimulated HL-
609" and HL-60°"" was still clearly higher than that in unstimulated
cells. These data suggest an additional TNFa-inducing pathway
activated by PMA, independent from NOX-produced ROS. Protein
kinase C shows broad substrate specificity and functions as a central
signal amplifier by phosphorylating different signaling molecules
[40], providing a variety of candidate mediators for PMA-induced
TNFa expression. Other mechanisms are the deactivation of A20,
which is able to block nuclear factor (NF)-«B activation if highly
expressed, or a decrease in phosphodiesterase-1 activation leading to
protein-kinase-A-induced inhibition of NF-kB activation [17,23].
Additionally, an increase in mRNA stability of both cytokines by a
zinc-deficiency-induced decrease in tristetraprolin is discussed [41].

Oxidative stress is known to influence chromatin remodeling,
transcription and translation [36,42]. However, we did not observe
any decrease in chromatin remodeling of IL-13 and TNFa promoters
or in IL-1p and TNFo mRNA levels when ROS were neutralized via
NAC or when the production of ROS was blocked via DPI in HL-609f
(Figs. 6 and 7). Therefore, we excluded an effect of ROS on chromatin
structure and transcription of IL-1(> and TNFo genes.

Next, we investigated the role of p38, a redox-sensitive kinase [37]
known to be involved in IL-13 and TNFa production [24,29]. An
abrogation of Escherichia-coli-induced p38 phosphorylation was
described when leukocytes were loaded with TPEN 30 min prior to
stimulation [24]. In contrast, Zago et al. showed the induction of p38
phosphorylation in zinc-deficient neuronal IMR-32 cells [43], which is
in concordance with our rapidly activated p38 in PMA-stimulated HL-
60 incubated with TPEN for 7 days (Fig. 8). This indicates a time-
dependent effect of zinc deficiency on p38 activation. Because the
same effect was detected in H,0,-stimulated HL-60 cells but blocked
by DPI preincubation, p38 activation seems to be mediated by ROS via
PMA-activated NOX.

Results concerning the function of p38 in TNFa and IL-1pB
synthesis are contradictory. There are studies reporting that p38 is
involved in transcription via NF<B or AP-1 [43-45], whereas others
claim an influence on mRNA stability or even the regulation of (post)
translational events by p38 [24,37]. Inhibition of p38 activation by
SB202190 did not abrogate PMA-induced IL-13 or TNFox mRNA
production in HL-60%" (data not shown), but significantly decreased
the secretion of both cytokines into the supernatant (Fig. 9).
Therefore, our study supports the posttranscriptional involvement
of p38 in IL-13 and TNFa production as suggested by others [24,37].

In conclusion, our results reveal that zinc deficiency leads to
chromatin remodeling, facilitating IL-13 and TNFoc mRNA transcrip-
tion after appropriate stimulation. Moreover, zinc deficiency enables
PMA-induced ROS production by NOX, subsequently promoting
posttranscriptional processing and secretion of IL-13 and TNFa via
p38 MAP kinase. Our findings provide a link between zinc deficiency
and the induction of IL-1 and TNFa production via epigenetic as well
as oxidant-mediated signaling pathways.

Transient hypozincemia is a physiological effect due to hepatic
zinc uptake during systemic inflammation induced by proinflam-
matory cytokines [14,46]. We hypothesize that a prolonged
decrease of serum zinc causes increased IL-1p3 and TNFa produc-
tion, initialing a vicious circle and inducing permanent zinc uptake
by the liver. Subsequently, this would explain the steadily increased
elevated level of proinflammatory cytokines as well as the
development of chronic inflammation. It is also responsible for
tissue destruction, fetal defects and immune dysfunctions reported
during zinc deprivation [1,4-6,20].

The reversibility of IL-13 and TNFa expression and chromatin
remodeling of their promoters together with the positive results of
zinc supplementation studies [5,7,21,47] is a promising hint for the

use of zinc in the treatment of chronic inflammatory diseases. The
mechanisms that induce IL-13 and TNFa synthesis under zinc
deficiency may affect malnutrition, pregnancy and aging, often
accompanied by zinc deficiency; thus, epigenetic effects should be
investigated in future zinc supplementation trial, e.g., in elderly.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jnutbio.2012.06.007.
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